Signal's Properties
1.Periodic Continuous-Time Signals
given two periodic CT signals
$$\forall t, x_1(t+T_1) = x_1(t)$$
and
$$\forall t, x_2(t+T_2) = x_2(t)$$
if the sum of them is periodic, then
$$\forall t, x_1(t+T)+x_2(t+T)=x_1(t)+x_2(t)$$
it is satisfied if and only if
$$\exists p,q \in N^*, T=pT_1=qT_2$$
in other word, p and q are coprime
$$\frac{T_1}{T_2}=\frac{p}{q}\in Q$$
2. Sifting Property
note that $$\forall \lambda \neq t_1, \delta(\lambda-t_1)=0$$
it follows that
$$\int_{-\infty}^{+\infty}f(\lambda)\delta(\lambda-t_1)d\lambda=\int_{t_1-\epsilon}^{t_1+\epsilon}f(\lambda)\delta(\lambda-t_1)d\lambda=f(t_1)$$
where $$f(t)$$ is continuous at $$t=t_1$$
3. Periodic Discrete-Time Signals
periodic DT signal satisfies that
$$\forall t\in N^*, x_1[n+r] = x_1[n]$$
if it is sinusoid signal, then
$$Acos[\Omega n+\theta]=Acos[\Omega n+\Omega r + \theta]=Acos[\Omega n+2\pi q + \theta]$$
which means that
$$\Omega = \frac{2\pi q}{r},q,r\in N^*$$
4. Property
- Linearity
- Time Invariance
- Casuality
- Memory